Musings on the BES Critical Point Search

Roy A. Lacey Stony Brook University

Outline

- > Introduction
 - ✓ Questions
 - ✓ Known's & unknowns
- Search strategy
 - ✓ Guiding principles
 - ✓ Basics of Finite-Time Effects
 - ✓ Basics of Finite-Size Effects
- Probes & Characterizing the CEP
 - ✓ HBT
 - ✓ Finite-Time-Scaling
 - √ Finite-Size-Scaling
- Summary
 - ✓ Epilogue

The QCD Phase Diagram

Essential Question

What ingredients are required to fully characterize the CEP "landmark"?

- > Its location (T^{cep}, μ_B^{cep}) ?
- \triangleright Its static critical exponents ν , γ ?
 - ✓ Static universality class?
 - ✓ Order of the transition
- Dynamic critical exponent/s z?
 - ✓ Dynamic universality class?

All are required to fully characterize the CEP

Validation of the first order phase transition → added bonus

Knowns & unknowns

Known known

Theory consensus on the static universality class for the CEP

Recent experimental Validation Lacey, PRL 114 (2015),142301

3D-Ising Z(2), $\nu \sim 0.63$, $\gamma \sim 1.2$

Summary - M. A. Stephanov Int. J. Mod. Phys. A 20, 4387 (2005)

Known unknowns

 \triangleright Location (T^{cep}, μ_B^{cep}) of the CEP?

Summary - M. A. Stephanov Int. J. Mod. Phys. A 20, 4387 (2005)

- > Dynamic Universality class for the CEP?
 - ✓ One slow mode (L), z ~ 3 Model H
 Son & Stephanov, Phys.Rev. D70 (2004) 056001

Moore & Saremi, JHEP 0809, 015 (2008)

√ Three slow modes (NL)

$$\begin{array}{c} \checkmark & z_T \sim 3 \\ \checkmark & z_W \sim 2 \end{array}$$
 [critical slowing down]

$$\checkmark$$
 $z_s \sim -0.8$ [critical speeding-up]

Y. Minami - Phys.Rev. D83 (2011) 094019

Knowledge about the dynamic critical exponent/s is crucial

Experimental verification and characterization of the CEP is an imperative

Ongoing beam energy scans to probe a large (T,µ_B)

domain

$(T,\mu_{\rm R})$ –Domain

- LHC → access to high T and small μ_R
- RHIC -> access to different systems and a broad domain of the (μ_B, T) -plane

 (μ_B, T) at chemical freeze-out (CFO)

RHIC_{BES} to LHC $\rightarrow \sim 360 \sqrt{s_{NN}}$ increase

 $\sqrt{s_{NN}}$ is a good proxy for exploring the (T, μ_B) plane for experimental signatures -> especially important if CFO is close to the phase boundary

The critical point is characterized by several (power law) divergences linked to the correlation length ξ

Central idea \rightarrow use beam energy scans to vary $\mu_B \& T$ to search for the influence of such divergences!

> Finite size/time effects significantly dampen these divergences → non-monotonic behavior

Basics of Finite-Time Effects

 χ_{op} diverges at the CEP so relaxation of the order parameter could be anomalously slow

Non-linear dynamics → Multiple slow modes

$$z_T \sim 3$$
, $z_v \sim 2$, $z_s \sim -0.8$

 $z_s < 0$ - Critical speeding up

z > 0 - Critical slowing down

Y. Minami - Phys.Rev. D83 (2011) 094019

An important consequence

$$\xi \sim au^{1/z}$$

Significant signal attenuation for short-lived processes with $z_T \sim 3$ or $z_v \sim 2$

eg.
$$\langle (\delta n) \rangle \sim \xi^2$$
 (without FTE) $\langle (\delta n) \rangle \sim \tau^{1/z} \ll \xi^2$ (with FTE)

Note that observables driven by the sound mode would <u>NOT</u> be similarly attenuated

The value of the dynamic critical exponent/s is crucial for HIC

Dynamic Finite-Size Scaling (DFSS) can be used to estimate the dynamic critical exponent z

→ employed in this study

Basics of Finite-Size Effects

L characterizes the system size

$$\xi \sim |T - T_c|^{-\nu} \le L$$

→ Only a pseudo-critical point is observed → shifted from the genuine CEP

positions & widths

→ A curse of Finite-Size Effects (FSE)

The curse of Finite-Size effects

E. Fraga et. al. J. Phys.G 38:085101, 2011

Displacement of pseudo-firstorder transition lines and CEP due to finite-size

Finite-size effects on the sixth order cumulant -- 3D Ising

A flawless measurement, sensitive to FSE, can not be used to locate and characterize the CEP directly

The Blessings of Finite-Size

$$\chi_T^{\text{max}}(V) \sim L^{\gamma/\nu},$$

 $\delta T(V) \sim L^{-\frac{1}{\nu}},$

$$\tau_T(V) \sim T^{\text{cep}}(V) - T^{\text{cep}}(\infty) \sim L^{-\frac{1}{\nu}},$$

$$\chi\left(T\,,L\,\right) = \,L^{\gamma\,/\nu}\,P_{\chi}\,\left(tL^{1/\nu}\,\right) \qquad t = \left(T\,-T_{c}\,\right)/\,T_{c}$$

M. Suzuki, Prog. Theor. Phys. 58, 1142, 1977

 $|\xi| \sim |T - T_c|^{-\nu} \leq L$

- ✓ Finite-size effects have specific identifiable dependencies on size (L)
- ✓ The scaling of these dependencies give access to the CEP's location, it's critical exponents and scaling function \rightarrow employed in this study

Probes

Systematic studies of various quantities as function of √s are ongoing

Good News

- Several suggestive non-monotonic behavior at a \sim common \sqrt{s}
 - ✓ Focus on HBT probe

Possible signals

- Systematic study as function of \sqrt{s} :
 - Scaled kurtosis (baryon fluctuations)
 - Source radii
- Suggestive nonmonotonic behavior at a ~common √s

Possible signals

0.3

0.25

0.2

0.15

0.1

STAR Preliminary

10

Au-Au

0%--40%

TPC

√s_{NN}[GeV]

Systematic study as function of \sqrt{s} :

 V_n

Suggestive nonmonotonic behavior at a

~ common \sqrt{s}

×10⁻³STAR Phys. Rev. Lett. **116** (2016) 112302

10

100

100

√s_{NN}[GeV]

Interferometry as a susceptibility probe

The expansion of the emitting source (R_L, R_{To}, R_{Ts}) produced in HI collisions R_{TS} is driven by c_s

χ of the order parameter diverges at the CEP

In the vicinity of a phase transition or the CEP, the divergence of κ leads to anomalies in the expansion dynamics

<u>Strategy</u>

Search for non-monotonic patterns for HBT radii combinations that are sensitive to the divergence of κ

Interferometry signal

$$C(\mathbf{q}) = \frac{dN_{2} / d\mathbf{p}_{1} d\mathbf{p}_{2}}{(dN_{1} / d\mathbf{p}_{1})(dN_{1} / d\mathbf{p}_{2})}$$

Adare et. al. (PHENIX) arXiv:1410.2559

STAR -Phys.Rev. C92 (2015) 1, 014904

$$C_2(\mathbf{q}) = N[(\lambda(1+G(\mathbf{q})))F_c + (1-\lambda)],$$

$$G(\mathbf{q}) \cong \exp(-R_{\text{side}}^2 q_{\text{side}}^2 - R_{\text{out}}^2 q_{\text{out}}^2 - R_{\text{long}}^2 q_{\text{long}}^2),$$

HBT Measurements

This comprehensive set of two-pion HBT measurements is used in our search and characterization

STAR -Phys.Rev. C92 (2015) 1, 014904

Strategy: Search for non-monotonic patterns for HBT radii combinations that are sensitive to the divergence of κ

Interferometry as a susceptibility probe

Hung, Shuryak, PRL. 75,4003 (95)

T. **Csörgő**. and B. Lörstad, PRC54 (1996) 1390-1403

Chapman, Scotto, Heinz, PRL.74.4400 (95)

Makhlin, Sinyukov, ZPC.39.69 (88)

$$R_{side}^{2} = \frac{R_{geo}^{2}}{1 + \frac{m_{T}}{T} \beta_{T}^{2}}$$

$$R_{out}^{2} = \frac{R_{geo}^{2}}{1 + \frac{m_{T}}{T} \beta_{T}^{2}} + \frac{\beta_{T}^{2} (\Delta \tau)^{2}}{1 + \frac{m_{T}}{T} \beta_{T}^{2}}$$

$$R_{out}^{2} = \frac{R_{geo}^{2}}{1 + \frac{m_{T}}{T} \beta_{T}^{2}}$$

The measured HBT radii encode space-time information for the reaction dynamics

The divergence of the susceptibility κ

- ✓ "softens" the sound speed c_s
- ✓ extends the emission duration

$$\frac{R_{long}^{2}}{emission} \approx \frac{T}{m_{T}} \tau^{2}$$

$$\frac{R_{long}^{2}}{emission} \approx \frac{T}{m_{T}} \tau^{2}$$

$$\frac{R_{out}^{2} - R_{side}^{2}) \text{ sensitive to the } \kappa}{(R_{side} - R_{init})/R_{long} \text{ sensitive to } c_{s}}$$

Specific non-monotonic patterns expected as a function of $\sqrt{s_{NN}}$

- > A maximum for (R²_{out} R²_{side})
- > A minimum for (R_{side} R_{initial})/R_{long}

The measurements validate the expected non-monotonic patterns!

→ Reaction trajectories spend a fair amount of time near a "soft point" in the EOS that coincides with the CEP!

** Note that $R_{long},\,R_{out}$ and R_{side} [all] increase with $\sqrt{s_{NN}}$ **

Finite-Size Scaling (FSS) is used for further validation of the CEP, as well as to characterize its static and dynamic properties

Finite-Size Effects

L characterizes the system size

 $|\xi| \sim |T - T_c|^{-\nu} \leq L$

Note change in peak heights positions & widths with L

Size dependence of HBT excitation functions

The data validate the expected patterns for Finite-Size Effects

- ✓ <u>Max values decrease</u> with <u>decreasing</u> system size
- ✓ Peak positions shift with decreasing system size
- ✓ Widths increase with decreasing system size

Size dependence of HBT excitation functions

characteristic patterns signal the effects of finite-size

I. Use $(R_{out}^2 - R_{side}^2)$ as a proxy for the susceptibility

- II. Parameterize distance to the CEP by $\sqrt{s_{NN}}$ $\tau_s = (\sqrt{s} \sqrt{s_{CEP}})/\sqrt{s_{CEP}}$
- III. Perform Finite-Size Scaling analysis with length scale $L = \overline{R}$

Length Scale for Finite Size Scaling

$$\frac{1}{\bar{R}} = \sqrt{\left(\frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2}\right)}$$

is a characteristic length scale of the initial-state transverse size,

 $\sigma_x \& \sigma_y \rightarrow RMS$ widths of density distribution

Summary of Scaling Procedure

(only two exponents
$$\chi_T^{\max}(V) \sim L^{\gamma/\nu},$$
 are independent) $\delta T(V) \sim L^{-\frac{1}{\nu}},$

$$\tau_T(V) \sim T^{\text{cep}}(V) - T^{\text{cep}}(\infty) \sim L^{-\frac{1}{\nu}},$$

$$(R_{\text{out}}^2 - R_{\text{side}}^2)^{\text{max}} \propto \bar{R}^{\gamma/\nu},$$
$$\sqrt{s_{NN}}(V) = \sqrt{s_{NN}}(\infty) - k \times \bar{R}^{-\frac{1}{\nu}},$$

Note that (μ_B^f, T^f) is not strongly dependent on size

- ightharpoonup Extract position ($\sqrt{s_{NN}}$) of deconfinement transition and critical exponents
- Use exponents to determine:
 - ✓ Order of the phase transition
 - √ Static universality class

Finite – Size Scaling

$$\left(R_{\text{out}}^2 - R_{\text{side}}^2\right)^{\text{max}} \propto R^{\gamma/\nu}$$

** Same ν value from analysis of the widths **

- > The critical exponents validate
 - √ the 3D Ising model (static) universality class
 - √ 2nd order phase transition for CEP

$$T^{cep} \sim 165 \text{ MeV}, \, \mu_B^{cep} \sim 95 \text{ MeV}$$

 $(\sqrt{s_{CEP}}$ & chemical freeze-out systematics)

Closurer test for FSS

- > 2nd order phase transition
- > 3D Ising Model (static) universality class for CEP

$$v \sim 0.66$$
 $\gamma \sim 1.2$

$$T^{cep} \sim 165 \text{ MeV}, \mu_B^{cep} \sim 95 \text{ MeV}$$

$$\chi(T,L) = L^{\gamma/\nu} P_{\chi}(tL^{1/\nu})$$

M. Suzuki, Prog. Theor. Phys. 58, 1142, 1977

Use T^{cep} , μ_B^{cep} , ν and γ to obtain Scaling Function P_{γ}

$$\begin{split} R^{-\gamma/\nu} \times (R_{\text{out}}^2 - R_{\text{side}}^2) \text{ vs. } R^{1/\nu} \times t_T, \\ \bar{R}^{-\gamma/\nu} \times (R_{\text{out}}^2 - R_{\text{side}}^2) \text{ vs. } \bar{R}^{1/\nu} \times t_{\mu_B}, \\ t_T = (T - T^{\text{cep}})/T^{\text{cep}} \\ t_{\mu_B} = (\mu_B - \mu_B^{\text{cep}})/\mu_B^{\text{cep}} \end{split}$$

T anf μ_B are from $\sqrt{s_{NN}}$

A further validation of the location of the CEP and the (static) critical exponents

Dynamic Finite – Size Scaling

> 2nd order phase transition

$$v \sim 0.66$$
 $\gamma \sim 1.2$

$$\gamma \sim 1.2$$

$$T^{cep} \sim 165 \text{ MeV}, \mu_B^{cep} \sim 95 \text{ MeV}$$

DFSS ansatz

at time τ when T is near T_{cep}

$$\chi (L, T, \tau) = L^{\gamma/\nu} f (L^{1/\nu} t_T, \tau L^{-z})$$
$$t_T = (T - T^{\text{cep}})/T^{\text{cep}}$$

$$\int_{T} For \\
T = T_0$$

$$\chi\left(L,T_{c},\tau\right) = L^{\gamma/\nu} f\left(\tau L^{-z}\right)$$

M. Suzuki, Prog. Theor. Phys. 58, 1142, 1977

Experimental estimate of the dynamic critical exponent

The magnitude of z is similar to the predicted value for z_s but the sign is opposite

Epilogue

Strong experimental indication for the CEP and its location

(Dynamic) Finite-Size Scalig analysis

- 3D Ising Model (static) universality class for CEP
- > 2nd order phase transition

$$T^{cep} \sim 165 \text{ MeV}, \, \mu_B^{cep} \sim 95 \text{ MeV}$$

 $\begin{array}{c} v \sim 0.66 \\ \gamma \sim 1.2 \\ z \sim 0.87 \end{array}$

New Data from RHIC (BES-II) together with theoretical modeling, can provide crucial validation tests for the coexistence regions, as well as to firm-up characterization of the CEP!

- ✓ Landmark validated
- ✓ Crossover validated
- ✓ Deconfinement validated
- ✓ (Static) Universality class validated
- ✓ Model H dynamic Universality class invalidated?
- ✓ Other implications!

Much additional work required to get to "the end of the line"

End

Phys.Rev.Lett.100:232301,2008) Source breakup dynamics in Au+Au Collisions at $\sqrt{s_{NN}}$ =200 GeV via three-dimensional two-pion source imaging

S. Afanasiev, ¹⁷ C. Aidala, ⁷ N.N. Ajitanand, ⁴³ Y. Akiba, ^{37, 38} J. Alexander, ⁴³ A. Al-Jamel, ³³ K. Aoki, ^{23, 37} L. Aphecetche, ⁴⁵ R. Armendariz, ³³ S.H. Aronson, ³ R. Averbeck, ⁴⁴ T.C. Awes, ³⁴ B. Azmoun, ³ V. Babintsev, ¹⁴ A. Baldisseri, ⁸ K.N. Barish, ⁴ P.D. Barnes, ²⁶ B. Bassalleck, ³² S. Bathe, ⁴ S. Batsouli, ⁷ V. Baublis, ³⁶ F. Bauer, ⁴ A. Bazilevsky, ³ S. Belikov, ^{3, 16}, ^{*} R. Bennett, ⁴⁴ Y. Berdnikov, ⁴⁰ M.T. Bjorndal, ⁷ J.G. Boissevain, ²⁶ H. Borel, ⁸ R. Bennett, ⁴⁴ M.T. Bennett, ²⁶ D.S. Bennett, ³³ D. Bennett, ²⁹ H. Bennett, ³ W. Bennett, ³ M. Bennett, ³ R. Bennett, ⁴ R. Benne

Phys.Lett. B685 (2010) 41-46

Three-dimensional two-pion source image from Pb+Pb collisions at $\sqrt{s_{NN}}$ =17.3 GeV: new constraints for source breakup dynamics

C. Alt⁹, T. Anticic²³, B. Baatar⁸, D. Barna⁴, J. Bartke⁶, L. Betev¹⁰, H. Białkowska²⁰, C. Blume⁹, B. Boimska²⁰, M. Botje¹, J. Bracinik³, P. Bunćić¹⁰, V. Cerny³, P. Christakoglou¹, P. Chung¹⁹, O. Chvala¹⁴, J.G. Cramer¹⁶, P. Csató⁴, P. Dinkelaker⁹, V. Eckardt¹³, D. Flierl⁹, Z. Fodor⁴, P. Foka⁷, V. Friese⁷, J. Gál⁴, M. Gaździcki^{9,11}, V. Genchev¹⁸, E. Gładysz⁶, K. Grebieszkow²², S. Hegyi⁴, C. Höhne⁷, K. Kadija²³, A. Karev¹³, S. Kniege⁹, V.I. Kolesnikov⁸, R. Korus¹¹, M. Kowalski⁶, M. Kreps³, A. Laszlo⁴, R. Lacey¹⁹, M. van Leeuwen¹, P. Lévai⁴, L. Litov¹⁷, B. Lungwitz⁹, M. Makariev¹⁷, A.I. Malakhov⁸, M. Mateev¹⁷, G.L. Melkumov⁸,

$$\tau = \tau_0 + a\rho$$

Space-time correlation parameter

Interferometry as a susceptibility probe

Dirk Rischke and Miklos Gyulassy Nucl.Phys.A608:479-512,1996

In the vicinity of a phase transition or the CEP, the sound speed is expected to soften considerably.

 $c_s^2 = \frac{1}{\rho \kappa_s}$

Divergence of the compressibility (κ)

→ non-monotonic excitation function for (R²_{out} - R²_{side}) due to an enhanced emission duration

Theoretical Guidance

Theory consensus on the static universality class for the CEP

The predicted location (T^{cep} , μ_R^{cep}) of the CEP is even less clear!

$$3D$$
-Ising $Z(2)$

$$\checkmark$$
 $\nu \sim 0.63$

$$\checkmark$$
 $\gamma \sim 1.2$

M. A. Stephanov Int. J. Mod. Phys. A 20, 4387 (2005)

Dynamic Universality class for the CEP less clear

One slow mode (L)

√ z ~ 3 - Model H Son & Stephanov Phys.Rev. D70 (2004) 056001 Moore & Saremi, JHEP 0809, 015 (2008)

Three slow modes (NL)

$$\sqrt{z_T} \sim 3$$

$$\sqrt{z_v} \sim 2$$

$$\sqrt{z_s} \sim -0.8$$

Y. Minami - Phys.Rev. D83 (2011) 094019

Experimental verification and characterization of the CEP is a crucial ingredient

What about Finite-Time Effects (FTE)?

 χ_{op} diverges at the CEP so relaxation of the order parameter could be anomalously slow

z > 0 - Critical slowing down

Non-linear dynamics → Multiple slow modes

$$Z_T \sim 3$$
, $Z_v \sim 2$, $Z_s \sim -0.8$

 $z_s < 0$ - Critical speeding up

Y. Minami - Phys.Rev. D83 (2011) 094019

An important consequence

$$\xi \sim au^{1/z}$$

Significant signal attenuation for short-lived processes with $z_T \sim 3$ or $z_v \sim 2$

eg.
$$\langle (\delta n) \rangle \sim \xi^2$$
 (without FTE) $\langle (\delta n) \rangle \sim \tau^{1/z} \ll \xi^2$ (with FTE)

The value of the dynamic critical exponent/s is crucial for HIC

Dynamic Finite-Size Scaling (DFSS) is used to estimate the dynamic critical exponent z